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Abstract

     Data for step-strain relaxation and cyclic compressive deformations of highly viscous
short elastomer cylinders are modeled using a large strain rubber viscoelastic constitutive
theory with a rate-independent friction stress term added.  In the tests, both small and
large amplitude cyclic compressive strains, in the range of 1% to 10%, were
superimposed on steady state compressed strains, in the range of 5% to 20%, for
frequencies of 1 and 10 Hz.  The elastomer cylinders were conditioned prior to each test
to soften them.  The constants in the viscoelastic-friction constitutive theory are
determined by employing a nonlinear least-squares method to fit the analytical stresses
for a Maxwell model, which includes friction, to measured relaxation stresses obtained
from a 20% step-strain compression test.  The simulation of the relaxation data with the
nonlinear model is successful at compressive strains of 5%, 10%, 15%, and 20%.
Simulations of hysteresis stresses for enforced cyclic compressive strains of 20% ±5%
are made with the model calibrated by the relaxation data.  The predicted hysteresis
stresses are lower than the measured stresses.

Introduction

     It is generally known that modeling both relaxation and cyclic deformations of
elastomers with a single constitutive theory is difficult.  Simply stated, the physics at the
molecular level can not be simulated with the simple continuum mechanics models used
by design engineers.  Elastomer components are often designed with multiple loading
requirements.  Thus, improved material models, that do not need to be tuned to each
application, are needed for use in the finite element codes used by designers.

     A number of methods that model viscoelastic stresses in elastomers are described in
books.1,2  The mathematical form of the viscoelastic material models are often
constructed by analogy to spring and dash-pot systems.  The stress-strain constitutive
form of these models can be written in either a history integral form or in an internal
variable form.3  Each formulation has its acclaimed advantages, numerical strategies,
etc.4-11  Recently, engineers designing lead-lag elastomeric dampers employed in
helicopter rotor dynamics12,13 have needed constitutive models valid for a wide range of
frequencies and strains.  Lesieutre and Smith13 have introduced rate independent friction
in their one-dimensional models (valid in the frequency range from 0.01 to 10.0 Hz.)
Their model produced excellent frequency dependent storage and loss moduli data.

     The purpose of this paper is to investigate the modeling of both relaxation and cyclic
deformations with a single constitutive model, and to introduce a friction model which is
described in terms of the tools used to model rubber elasticity.  In this paper we: (a)
Briefly review a large strain internal variable model for viscoelasticity, (b) Introduce a
friction model and present its analytical form for tension-compression; (c) Describe the
relaxation and cyclic tests conducted on short cylinders made of a viscous filled
elastomer; (d) Perform a nonlinear least-squares analysis14 to fit the constitutive theory to
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relaxation data; and (e) Employ the constitutive theory to simulate cyclic tests at 20%
compressive strain.

Linear Viscoelasticity and Viscohyperelasticity

     This section contains a short review of internal variable formulations for linear
viscoelasticity1,2,3 and for viscohyperelasticity.6-9  They are presented in the one-
dimensional form employed throughout the remainder of this paper.  The Maxwell solid
is the linear viscoelastic model used in this study.  A Maxwell solid is shown in Figure 1.
At any time, t, the stress in the Maxwell solid is given by
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where N is the number of internal solids, eE , ( )tε  are the modulus and strain for the
elastic solid, iE , ( )tiε  are the moduli and strains for the internal viscous solids, and eσ ,

iσ  are the corresponding stresses.  During a time dependent deformation of this linear
system the values of the internal strains are determined by integrating the differential
equations that represent equilibrium of the spring and dash-pot system.  The equations are
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where the iη  are constants which are commonly determined from relaxation tests.  When
a time dependent stress is applied, Equations (1) and (2) are simultaneously integrated.  If
a time dependent strain is applied, Equation (2) is integrated and Equation (1) determines
the stress.

     The tools utilized to model the nonlinear elastic deformations of elastomers can be
employed to model viscoelastic deformations.4-10  The method used here was termed
viscohyprelasticity by Johnson and Quigley6 since it employs hyperelastic solids with
time dependent reference shapes.  A schematic of a viscohyperelastic solid is shown in
Figure 2.  The total value of the principal Cauchy stress shown in Figure 2 is expressed as
follows
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where eτ  and iτ  are the Cauchy stresses for the elastic, e , and internal, i , solids
respectively.  In Figure 2, the jiL  represent time dependent reference lengths for side j of

internal solid i.  The linear Maxwell model has a distribution of energies, 22
iiE ε ,
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associated with the internal solids.  Similarly, a viscohyperelastic solid has a distribution
of energy density functions, iW .  During a step-strain deformation of a viscohyperelastic
solid, the time dependent reference lengths of the internal solids change in time so that
the resulting stresses represent the relaxation stresses.  In previous efforts the evolution of
the reference lengths (shapes for three-dimensional solids) was determined by relaxing
ad-hoc stresses, which act on the reference shapes.  In this effort the evolution of the
reference lengths of the internal solids is determined by relaxing the viscous Cauchy
stresses which act on the deformed solid.  With the Cauchy-relaxation equation, the
viscohyperelasticity formulation is a nonlinear form of the Maxwell solid formulation
that is described with the tools employed for rubber elasticity.  It is formulated for
tension-compression as follows.

     The stretches for the solids are shown in Figure 3.  The elastic Cauchy stress, eτ ,
acting on the solid is given by15
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where eI1  and eI2  are the strain invariants.15  Similarly, the viscous Cauchy stresses, iτ ,
on the solid are given by
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where the stretches for the internal solids are given by 
i

i L1

1
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equations are linear differential equations in terms of stress, and are expressed as
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Equation (6) is analogous to the relaxation equation for the spring dash-pot elements in a

Maxwell solid, i
i
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σση =− , where iσ  is the nominal stress.  Expanding Equation (6)
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Equations (3) and (7) are simultaneously integrated if a time dependent stress is applied,
and Equation (7) is integrated alone if a time dependent stretch is specified.  The authors
note, the purpose of viscohyperelasticity, and other related nonlinear viscoelasticity
theories, is not to simulate one-dimensional problems, but to provide methods for the
modeling of three-dimensional problems in which the viscous component of stress
depends differently on the stretches than the elastic components do.

Friction Model

     One-dimensional models, like the Maxwell solid shown in Figure 1, can be modified
with elements that add rate independent friction-like effects.  Recently, "friction-elastic"
elements were added to a Maxwell solid13 to improve the prediction of the storage and
loss moduli as a function of frequency for a dynamically loaded elastomeric helicopter
lead-lag damper.  The model was very successful.  The success obtained by adding rate
independent friction-elastic stresses in the one-dimensional model suggests that three-
dimensional friction-like models should be investigated.  Below we describe a friction
model for elastomers subjected to tension and compression deformations.

     As the deformed solid undergoes a virtual displacement, friction stresses will resist the
deformation in each principal direction.  With Fiτ  as the friction stress in the direction of
the stretch iλ , the work done, Qδ , during a virtual displacement for an incompressible
solid is
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where the absolute values have been used to avoid adding extra vector notation (the
friction stress is always in the opposite direction to that of the virtual displacement.)  For
three-dimensional deformations, Equation (8) can be introduced into the variational
formulation for the viscoelastic deformation of the solid.

     Specific forms of Fiτ  need to be investigated.  The approach taken here is to employ a
friction stress that is small near the reference state and is large at very large values of the
stretches.  According to the arithmetic-geometric-mean inequality, the surface area of a
deformed incompressible unit cube is minimal in its undeformed configuration.16

Friction stresses that are proportional to the total deformed cube's area are thus minimal
in the undeformed configuration.  This suggests that an 'area rule' formula for the friction
stress may be useful.  Here, the friction stress, Fiτ , is assumed proportional to the surface
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areas of the deformed unit cube, which are parallel to the direction of the principal stretch
iλ .  This form of the friction stress is proportional to only part of the unit cube's area so

the friction stress is not minimal in the reference state.  However, the friction stress is
minimal near the reference state and the simplicity of its analytical form is attractive.
The friction stresses are given by

( )kji
F
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The coefficient FC  is determined by a least-squares fit to measured data.  The stretches
in the solid are related by
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The virtual work becomes
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The Cauchy stress, in the direction of 1λ , needed to overcome this resistance is
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The friction stress, F
1τ , is minimal at 816.01 =λ  and grows without bound when 01 →λ

and when ∞→1λ .  The friction stress given by Equation (14) is added to the sum of the
elastic and viscous stresses to obtain the total stress.
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Experimental

     Compression tests were performed on cylindrical specimens using an Instron model
1331 servohydraulic testing machine.  The specimens were conditioned before each
series of tests by cycling the sample to a 30% compressive strain at 0.5 Hz for 20 cycles.
The specimen was unloaded and allowed to relax for 15 minutes before the next test, and
between each test.  After conditioning and relaxing the cylinders, the cylinders had a
diameter of 2.87 cm and a height of 1.19 cm, see Figure 4.  Compression relaxation data
were obtained by compressing the specimen at a crosshead rate of 610 cm/min to a
specified strain, then holding at that displacement for 15 minutes while recording the
load.  At the start of the test, the test machine piston was offset from the zero load
position to allow the piston time to come up to the correct speed before applying the load
to the specimen.  Four different compressive strain levels were used to obtain relaxation
data: 5, 10, 15 and 20%.

     Ramp to cyclic (enforced strain) tests were performed by compressing the sample to a
specified mean strain level then applying different sinusoidal amplitudes about the mean
strain level.  The tests were performed at a ramp speed of 0.36 cm/min and two different
frequencies: 1 Hz and 10 Hz.  The samples were conditioned before testing using the
procedure described above.  Between each test the sample was allowed to rest for 15
minutes.  The matrix for the cyclic tests is described in Table I.  All of the measured
hysteresis loops are shown in Figures 5 and 6.

Table I.  Cyclic Testing Matrix
Mean Strain Level Strain Amplitude

5% 1%
5% 2.5%
10% 2.5%
10% 5%
15% 5%
15% 10%
20% 5%
20% 10%

Nonlinear Least Square Fit to Data

     It is difficult to directly determine all of the parameters in the nonlinear viscoelastic-
friction model described above from time dependent stress-strain data.  The following
procedure, which employs the linear Maxwell model with friction, was applied to
determine values for the parameters ( ii Eη  in Equation (6)) which allow the relaxation
data to be simulated.  Equations (1) and (2) can be combined so that Equation (1) can be
written in history integral form.  When the friction stress, in nominal stress form, is added
to the history integral form of the viscoelastic stress, the total stress becomes
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where the relation ελ +=1  was employed in the nominal stress form of Equation (14).
If the enforced strain is expressed in polynomial form, Chen14 has developed a procedure
that determines NNe EEE ηη  ..., , ,..., , , 11  by performing a nonlinear least-squares fit of the
first two terms of Equation (15) to the measured data.  Chen's least-squares procedure
was modified in this effort to include all the terms in Equation (15).  The measured cross
head displacement as a function of time (for the 20% compressive strain relaxation test)
was converted to compressive strain as a function of time.  The strain as a function of
time was modeled with four polynomials which were entered into Equation (15).  The
required differentiation and integration was carried out and an analytical expression for
the stress, ( )tiσ , was obtained.  The nonlinear least-squares procedure was allowed to

optimize the data fit with the elastic modulus, eE , the friction term, FC , and four
internal solids, 4141   ..., ,  , ..., , ηηEE .  The parameters determined are shown in Table II.
The least-squares fit of the Maxwell solid with friction to the data is presented in Figures
7 and 8.  A stress jump due to the friction 'turning off' is also shown in Figure 8.

Table II.  Results of Least-Squares Fit.

Elastic Moduli
(MPa)

Time Constants
(s)

=1E 11.14   =11 Eη  0.01237
=2E 4.770   =22 Eη  0.3075
=3E 2.856   =33 Eη  5.942
=4E 2.850   =44 Eη  130.4
=EE 7.006 ---

=FC 0. 007936 ---

The ratios 4411  ..., , ηη EE  and the constant FC were directly used in the
viscohyperelastic-friction model.  To complete the model, neo-Hookean energy density
functions were employed as follows

( )31 −= ICW e
e and ( )31 −= i

i
i ICW      (16)

The relaxed nominal stress, e
1σ , at t = 900 s for a compressive stretch ratio of 80.01 =λ

was used with the nominal stress formula
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to compute 9377.0=eC MPa.  The peak nominal stress, 4.5 MPa in Figure 8, and the

nominal stress formula imply that 01.2
4

1
≥∑
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iC  MPa.  The constants iC  were set in

proportion to the constants iE  and to sum to 2.01 MPa.  Three numerical simulations of

the ramp-relaxation tests were made in which the values for the iC were scaled to
improve the predictions of the peak stress.  The third set of numbers ( 453.11 =C MPa,

6221.02 =C MPa, and 3717.043 == CC MPa) were selected.  All four ramp-relaxation
tests were then simulated with the viscohyperelastic-friction model.  The results are
shown in Figures 9 to 11.  Hysteresis loops computed for a cyclic frequency of 1.0 Hz at
stretch ratios of 05.080.0 ± are shown in Figure 12.  The inner loop represents the case
without the friction stress.  We note, the ramp-relaxation data was used to determine the
constants for the model.  The constant representing the friction term, FC , is only
involved during the ramp to strain part of the test (the time when the strain rate is
nonzero.)  This represents a very small portion of the data and a small value of FC  is
expected.  If dynamic data is fit, instead of relaxation data, a larger value of FC  may
result.

Simulations of Cyclic Compressive Loading

     The viscohyperelastic-friction model described above was employed to simulate the
measured cyclic stress data.  The results for a 20% compression with a harmonic
oscillation of 5% are shown in Figures 13 and 14 for cyclic frequencies of 1.0 and 10.0
Hz respectively.  Results for the Maxwell model are also included.  Both the Maxwell
and viscohyperelastic models under predict the measured hysteresis stresses.  The slopes
of the major axes of the measured hysteresis loops indicate a stiffer viscous resistance
than is indicated by the linear and nonlinear models.  Throughout the entire range of the
data, the major axes of the measured hysteresis loops indicate a stiff viscoelastic
resistance, see Figures 5 and 6.

Conclusions

     Step-strain relaxation and cyclic compressive deformations of a highly viscous filled
elastomer were modeled with Maxwell solid theory and with viscohyperelastic solid
theory.  Both models included a rate independent friction stress described by the principal
stretch ratios.  The Maxwell-friction model was directly calibrated from ramp-relaxation
data by employing a nonlinear least-squares method.  The relaxation rates, friction
constant, and elastic energy function for the viscohyperelastic-friction model were taken
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from the Maxwell-friction model and the relaxed stress at t = 900 s.  The energy
functions for the internal solids were determined by three numerical simulations of a
ramp-relaxation test.  The resulting viscohyperelastic-friction model is useful for
simulating the relaxation data.  Dynamic stress data, determined in the cyclic loading
tests, was not simulated well.  Future models, calibrated by relaxation data, should
provide much larger dynamic viscous-friction stresses to be useful for designers.
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Figure 5.  Measured cyclic compressive stress as a function of stretch ratio, for all

                tests at a frequency of 1.0 Hz.
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Figure 6.  Measured cyclic compressive stress as a function of stretch ratio, for all

                tests at a frequency of 10.0 Hz.
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Figure 9.  Measured and computed relaxation stresses for stretch ratios of 0.95, 0.90,

                0.85, and 0.80 (time: 0.0 to 0.1 s).
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Figure 10.  Measured and computed relaxation stresses for stretch ratios of 0.95, 0.90,

                  0.85, and 0.80 (time: 0.0 to 1.0 s).
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                  0.85, and 0.80 (time: 0.0 to 30.0 s).
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                  (0.80 ± 0.05), frequency of 1.0 Hz, with and without friction.
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Figure 13.  Measured and computed cyclic compressive stress as a function of stretch

                  ratio (0.80 ± 0.05), frequency of 1.0 Hz.
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Figure 14.  Measured and computed cyclic compressive stress as a function of stretch

                   ratio (0.80 ± 0.05), frequency of 10.0 Hz.


